Discrete harmonic functions in Lipschitz domains
نویسندگان
چکیده
منابع مشابه
Harmonic maps on domains with piecewise Lipschitz continuous metrics
For a bounded domain Ω equipped with a piecewise Lipschitz continuous Riemannian metric g, we consider harmonic map from (Ω, g) to a compact Riemannian manifold (N, h) ↪→ Rk without boundary. We generalize the notion of stationary harmonic maps and prove their partial regularity. We also discuss the global Lipschitz and piecewise C1,α-regularity of harmonic maps from (Ω, g) to manifolds that su...
متن کاملLipschitz classes of A-harmonic functions in Carnot groups
The Hölder continuity of a harmonic function is characterized by the growth of its gradient. We generalize these results to solutions of certain subelliptic equations in domains in Carnot groups.
متن کاملA Bilinear Estimate for Biharmonic Functions in Lipschitz Domains
We show that a bilinear estimate for biharmonic functions in a Lipschitz domain Ω is equivalent to the solvability of the Dirichlet problem for the biharmonic equation in Ω. As a result, we prove that for any given bounded Lipschitz domain Ω in Rd and 1 < q < ∞, the solvability of the Lq Dirichlet problem for ∆2u = 0 in Ω with boundary data in WA(∂Ω) is equivalent to that of the Lp regularity p...
متن کاملThe Riesz Transform, Rectifiability, and Removability for Lipschitz Harmonic Functions
We show that, given a set E ⊂ Rn+1 with finite n-Hausdorff measure Hn, if the n-dimensional Riesz transform
متن کاملQuasiconformal Harmonic Functions between Convex Domains
We generalize Martio’s paper [14]. Indeed the problem studied in this paper is under which conditions on a homeomorphism f between the unit circle S1 := {z : |z| = 1} and a fix convex Jordan curve γ the harmonic extension of f is a quasiconformal mapping. In addition, we give some results for some classes of harmonic diffeomorphisms. Further, we give some results concerning harmonic quasiconfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Communications in Probability
سال: 2019
ISSN: 1083-589X
DOI: 10.1214/19-ecp259